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APPROXIMATE CONTROLLABILITY FOR
SEMILINEAR INTEGRO-DIFFERENTIAL CONTROL
EQUATIONS WITH QUASI-HOMOGENEOUS
PROPERTIES

DAEWOOK KIiM* AND JIN-MUN JEONG**

ABSTRACT. In this paper, we consider the approximate controlla-
bility for a class of semilinear integro-differential functional control
equations in which nonlinear terms of given equations satisfy quasi-
homogeneous properties. The main method used is to make use
of the surjective theorems that is similar to Fredholm alternative
in the nonlinear case under restrictive assumptions. The sufficient
conditions for the approximate controllability is obtain which is dif-
ferent from previous results on the system operator, controller and
nonlinear terms. Finally, a simple example to which our main result
can be applied is given.

1. Introduction

In this paper, we deal with the approximate controllability for semi-
linear integro-differential functional control equations in the form
(1.1)
%x(t) = Ax(t) + fg kE(t—s)g(s,z(s))ds + (Bu)(t), 0<t<T,
z(0) = o,

where

f(t,x) = /0 k(t — s)g(s,z(s))ds
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for a k belonging to L%(0,T). Let V and H be complex Hilbert spaces
forming a Gelfand triple

Vo H=H <V*

by identifying the antidual of H with H. Here, the principal operator A
generates an analytic semigroup (S(¢));>0 in both H and V* and B is a
bounded linear operator from another Hilbert space L2(0,7;U)(T > 0)
to L?(0,T;U). k belongs to L?(0,T) and g is a nonlinear mapping as
detailed in Section 2.

The controllability problem is a question of whether is possible to
steer a dynamic system from an initial state to an arbitrary final state us-
ing the set of admissible controls. There are two main ways to deal with
the approximate controllability for semilinear control equations, the first
is to use the range condition argument of controller as seen in [27, 28].
The approximate controllability of semilinear systems dominated by lin-
ear parts(in case g = 0) as matters connected with [19] has been studied
by assuming that S(¢) is compact operator in [6, 10, 13, 20, 26]. An-
other approach is to use a fixed point theorem combined with technique
of operator transformations by configuring the resolvent as seen in [3].
Recently, the approximate controllability of stochastic equations have
been studied by authors [4, 21] as a continuous study. Similar consid-
erations of semilinear stochastic systems have been dealt with in many
references [2, 8, 15, 16, 17, 18, 22]. Sukavanam and Tomar [23] stud-
ied the approximate controllability for the general retarded initial value
problem by assuming that the Lipschitz constant of the nonlinear term
is less then one. In particular, Wang [26] established the approximate
controllability for the equation (1.1) with conditions the range condition
of controller provided

LU .
(1.2) lim sup 1FCollezomsm
lull 2. —oe Ulz20.1:m)

is sufficiently small. Moreover, [12] dealt with the approximate control-
lability for the system (1.1) even if v # 1 of (1.2) by using so called
Fredholm theory: (A — F)(u) = f is solvable in L?(0,T; H).

In this paper, authors want to use a different method than the previ-
ous one. Our used tool is the surjective theorems similar to the Fredholm
alternative for nonlinear operators under restrictive assumption, which is
on the solution of nonlinear operator equations AB(z) — F'(z) = y in de-
pendence on the real number A, where B is a controller operator and F' is
a nonlinear operator. In order to obtain the approximate controllability
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for a class of semilinear integro-differential functional control equations,
it is necessary to suppose that B acts as an odd homeomorphism opera-
tor while F' related to the nonlinear term of (1.1) is quasi-homogeneous
as defined in Sect. 3. By using this method, the approximate controlla-
bility of (1.1) without restrictions such as the inequality constraints for
Lipschitz constant of f or compactness of S(t) can be given as applicable
conditions.

Sect. 2 is devoted to constructing a variation of constant formula of
L?-regularity and properties of the strict solutions of (1.1)(see [7] in the
linear case). In Sect. 3, in order to apply the surjective theory in the
proof of the main theorem, we assume some compactness of the embed-
ding between intermediate spaces. Then by virtue of [1], we can show
that the solution mapping of a control space to the terminal state space
is completely continuous by means of regularities results. Moreover, the
sufficient conditions on the controller and nonlinear terms for approxi-
mate controllability for (1.1) can be obtained while the nonlinear term
g of (1.1) is odd quasi-homogeneous. Finally, a simple example to which
our main result can be applied is given.

2. Semilinear functional equations
The notations |- |, || - || and || - ||« denote the norms of H, V and V*,
respectively as usual. Therefore, for the brevity, we may regard that
lull« < Jul <|lull, VueV.

Let a(u,v) be a bounded sesquilinear form defined in V' x V satisfying
Garding’s inequality

Re a(u,u) > col|ul|®> = c1|ul?, ¢ >0, ¢ >0.
Let A be the operator associated with this sesquilinear form:
(Au,v) = —a(u,v), u, veW.

Then A is a bounded linear operator from V to V*. The realization of
A in H which is the restriction of A to

D(A)={ueV:Auec H}

is also denoted by A. Moreover, for each T' > 0, by using interpolation
theory, we have

L*0,T;V)nWh2(0,T;V*) c C([0,T); H).



192 Daewook Kim and Jin-Mun Jeong

From the following inequalities
collul* < Rea(u,u) + erlul® < [Aul Ju| + erul® < (|Au] + er|u])|ul,
it follows that there exists a constant Cy > 0 such that
[[ull < Collullpiylul?.
Therefore, in terms of the intermediate theory, we can see that
(D(A),H)1/20 ="V, and (V,V*)1,9, = H,

where (V,V*); /52 denotes the real interpolation space between V' and
V*(Section 1.3.3 of [5], [25]). For the sake of simplicity we assume that
c1 = 0 and hence the closed half plane {\ : Re A > 0} is contained in the
resolvent set of A. It is known that A generates an analytic semigroup
S(t) in both H and V*. As seen in Lemma 3.6.2 of [24], there exists a
constant M > 0 such that

(2.1) [S(t)z| < Mlz| and |[S(t)x][. < M|lx]],
moreover, for all ¢ > 0 and every z € H or V*:
|S@)a| < Mt ||, ||S ()| < ME2[a].

The following initial value problem for the abstract linear parabolic
equation

de(t) _ <
22) { U — Aw(t)+ k(1), 0<t<T,

z(0) = xo.

By virtue of Theorem 3.3 of [7](or Theorem 3.1 of [10]), we have the
following result on the corresponding linear equation (2.2).

ProrosITION 2.1. Suppose that the assumptions for the principal
operator A stated above are satisfied. Then the following properties
hold:

1) Noting that V = (D(A),H) 99, for zo € V and k € L*(0,T; H),
T > 0, there exists a unique solution x of (2.2) belonging to

L*(0,T; D(A)) nWh2(0,T; H) € C([0,T]; V)
and satisfying

(2.3) || 2 (0,m; D) wr20,1:m) < Crlllzoll + [1E] L20,7;m))

where C is a constant depending on T.
2) Let 79 € H and k € L*(0,T;V*), T > 0. Then, noting that
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(V,V*)1)22 = H, there exists a unique solution x of (2.2) belonging
to
L0, T; V) n W20, T;V*) c C([0,T]; H)
and satisfying
(2.4) 12|l 220, 0;v )W 12 0,m5v+) < Crllzol + |1kl L20,7,v+)),

where C is a constant depending on T.

LEMMA 2.2. Suppose that k € L?(0,T;H) and z(t) = fo
s)k(s)ds for 0 <t < T. Then there exists a constant Cs such that
(2.5) 2|l 20,y < CoT Kl L2(0,7;m),
and
(2.6) @[ 20,0y < CoVT Kl 1207:m1)-

Proof. By a consequence of (2.3), it is immediate that
(2.7) 2l z2(0,7.0(4)) < Callkll L2007
Since

||$||%2(0,TH = fo |fo (t — s)k(s)ds|*dt < Mfo fo |k(s)|ds)?dt
<M [t [Ek(s)Pdsdt < MTE [T |k(s)[2ds,
where M is the constant of (2.1), it follows that
(2.8) 220,50y < T/ M/2|[K|| 20,1 1)
From (2.7), and (2.8) it holds that
|2l 2 (0.7v) < Cov/CLT(M/2) 41K 20 1)

So, if we take a constant C5 > 0 such that

Co = max{\/M/2,Co\/C1(M/2)"/*},
Thus, (2.5) and (2.6) are satisfied. O

Consider the following initial value problem for the abstract semilin-
ear parabolic equation

(2.9) %x(t) = Ax(t) + fo (t —s)g(s,z(s))ds + (Bu)(t),
' z(0) = x.

Let U be a Hilbert space and the controller operator B be a bounded
linear operator from L2(0,T;U) to L?(0,T; H).
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Let g : RT x V — H be a nonlinear mapping satisfying the following:

Assumption (F).

(i) For any x € V, the mapping g(-, z) is strongly measurable;
(ii) There exist positive constants Lo, L1 such that

(a) x> g(t,z) is odd mapping (g(-, —z) = —g(-, z));
(b) foralteR", z,2€V,

|g(t,l‘) _g(tvi‘” < Ll”:v - jj”a
l9(t, 0)] < Lo.

For z € L?(0,T;V), we set

t
ft.) = [kt = 9)g(s.als))ds
0
where k belongs to L%(0,T).
LEMMA 2.3. Let Assumption (F) be satisfied. Assume that z €

L?(0,T;V) for any T > 0. Then f(-,x) € L*(0,T; H) and
(2.10)

||f('>$)HL2(o,T;H) < L0\|kHL2(0,T)T/\@+ |’k‘|L2(0,T)ﬁL1H$|’LQ(O,T;V)~
Moreover if z, 2 € L*(0,T;V), then
2.11) [1fC,2) = £ @) |20 < Ikl L2y VT L]z — &[] 20,70

Proof. From Assumption (F) and using the Hoélder inequality, it is
easily seen that

Hf(‘7x)HL2(O,T;H) < Hf('?O)HLQ(O,T;H) + Hf(:x) - f('?O)HLQ(O,T;H)

< (/OT | /Ot k(t — s)g(s,O)ds|2dt> .

+ </0T ] /Ot k(t —s){g(s,z(s)) — 9(570)}ds|2dt> 1/2

< L0”k||L2(O,T)T/\/§+ Hk||L2(0,T)\FTH9(',ﬂf) - g("O)HLQ(O,T;H)
< Lollk|l 20y T/V2 + |kl 200y VT L ||| L2 0.1 -
The proof of (2.11) is similar. O

By virtue of Theorem 2.1 of [11], we have the following result on
(2.9).
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PROPOSITION 2.4. Let Assumption (F) be satisfied. Then there exists
a unique solution x of (2.9) such that

x € L*0,T;V)nWh2(0,T;V*) c C([0,T); H)
for any xoy € H. Moreover, there exists a constant C's such that
(2.12) 2|l 220,739 )nw 2 0,m5v+) < Cs(|zol + [[wllz20,10))-

COROLLARY 2.5. Assume that the embedding D(A) C V is com-
pletely continuous. Let Assumption (F') be satisfied, and x,, be the so-
lution of equation (2.9) associated with u € L?(0,T;U). Then the map-
ping u + x,, is completely continuous from L?(0,T;U) to L*(0,T;V).

Proof. If u € L?(0,T;U), then in view of (2.4) in Proposition 2.1
(2.13) @l L2 0,mv )2 0,mv+) < Cs(lzol + 1| B] |ullp20,m,0))-
Since x, € L?(0,T;V), we have f(-,z,) € L?(0,T; H). Consequently
z, € L*(0,T; D(A)) N Wh2(0,T; H).

Hence, with aid of (2.3) of Proposition 2.1, (2.10) and (2.12),
lzullr20,7;0A) w200 < Cilllzoll + [ (5 zu) + Bullp2o,1;m))
< Cr{llzol| + LOHkHLQ(O,T)T/\@ + HkHH(o,T)ﬁLleHB(o,T;V) + HBUHB(O,T;H)}
< Ci{llzoll + Lollk|| 220, T/ V2

+ |kl 220,y VT L1Cs (|0 + |ull L2(0m0) + 1|1 Bull 20781 } -

Thus, if u is bounded in L?(0,T; H), then so is x, in L%(0,T; D(A)) N
WhH2(0,T; H). Since D(A) is compactly embedded in V by assumption,
the embedding

L*(0,T; D(A) nWh2(0,T;V) c L*(0,T; V)

is completely continuous in view of Theorem 2 of [1], the mapping u
x, is completely continuous from L?(0,T;U) to L?(0,T;V). O
3. Approximate controllability

Throughout this section, we assume that D(A) is compactly embed-
ded in V. Let z(T; f,u) be a state value of the system (2.9) at time T'
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corresponding to the nonlinear term f and the control u. We define the
reachable sets for the system (2.9) as follows:

Ry (f) = {a(T; f,u) : w € L*(0, T; U)},
Rr(0) = {z(T;0,u) : w € L*(0,T;U)}.

DEFINITION 3.1. The system (2.9) is said to be approximately con-
trollable in the time interval [0, T if for every desired final state 1 € H
and € > 0 there exists a control function u € L?(0,7;U) such that
the solution x(T; f,u) of (2.9) satisfies |z(T'; f,u) — x1| < €, that is, if
Rr(f) = H where Rp(f) is the closure of Rp(f) in H, then the system
(2.9) is called approximately controllable at time 7.

Let us introduce the theory of the degree for completely continuous
perturbations of the identity operator, which is the infinite dimensional
version of Borsuk’s theorem. Let 0 € D be a bounded open set in
a Banach space X, D its closure and 9D its boundary. The number
d[I —T; D, 0] is the degree of the mapping I — T with respect to the set
D and the point 0 (see [9] or [14]).

THEOREM 3.2. (Borsuk’s theorem) Let D be a bounded open sym-
metric set in a Banach space X, 0 € D. Suppose that T : D — X be
odd completely continuous operator satisfying T(x) # x for x € 0D.
Then d[I — T; D,0] is odd integer. That is, there exists at least one
point xg € D such that (I —T)(xzg) = 0.

DEFINITION 3.3. Let T be a mapping defined by on a Banach space
X with value in a real Banach space Y. The mapping T is said to be a
(K, L, a)-homeomorphism of X onto Y if
(i) T is a homeomorphism of X onto Y;
(ii) there exist real numbers K > 0, L > 0, and a > 0 such that

Lzl < IT@)lly < Kll2ll%, VoeX.

LEMMA 3.4. Let T be an odd (K, L, a)-homeomorphism of X onto
Y and F : X — Y a continuous operator satisfying

F
lim sup M = N e R".

lzllx—oo 2%
Then if |A| ¢ [, 2] U {0} then

lim ||A\T(x) — F(z)|ly = oc.

[zl x —o0
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Proof. Suppose that there exist a constant M > 0 and a sequence
{zn} C X such that

H)‘T(xn) - F(xn)HY <M

as x, — 00. From this it follows that
M (z,)  F(xy)

- 0.
Hence, we have
AT
gy TG _
. . . . N N
and so, [A\|[K' > N > |X|L. It is a contradiction with |A| ¢ [%, T]. O

PROPOSITION 3.5. Let T be an odd (K, L, a)-homeomorphism of X
ontoY and F' : X — Y an odd completely continuous operator. Suppose
that for A\ # 0,

(3.1) lim ||]M(z) — F()||y = occ.

[zl x =00

Then XT' — F maps X onto Y.

Proof. We follow the proof Theorem 1.1 in Chapter II of [9]. Suppose
that there exists y € Y such that AT'(z) = y. Then from (3.1) it follows
that FT~!':Y — Y is an odd completely continuous operator and

lim |ly — FT~1(2)|ly = oc.
[lylly —o0 A

Let yg € Y. There exists r > 0 such that
-1,Y
ly— FT l(x)HY > [yolly = 0

for each y € Y satisfying ||y|ly =r. Let Y, ={y € Y : ||y|ly <r} be a
open ball. Then by view of Theorem 3.1, we have d[y — FT1(%);Y;,0]
is an odd number. For each y € Y satisfying ||y||y = r and ¢ € [0, 1],
there is

1,9 -1.Y
ly = FT7H(5) = tyolly = lly = FTH()lly = [lyol [y > 0
and hence, by the homotopic property of degree, we have

dly — FT7(3): Yr, o] = dly — FT~1(3): Y2, 0 £ 0.
Hence, by the existence theory of the Leray-Schauder degree, there exists
a y1 € Y, such that

vy = FT (50 = yo.
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We can choose xo € X satisfying AT'(zo) = y1, and so, AT (z¢) — F(xg) =
yo- Thus, it implies that AT — F' is a mapping of X onto Y. O

Combining Lemma 3.4. and Proposition 3.5, we have the following re-
sults.

COROLLARY 3.6. Let T be an odd (K, L,«)-homeomorphism of X
ontoY and F : X — Y an odd completely continuous operator satisfying

F
i sup LE@ly

[|z|| x —o0 HxH%(

= N eR".

Then if || ¢ [%, 5] U {0} then AT — F maps X onto Y. Therefore, if
N =0, then for all X # 0 the operator NXT' — F maps X onto Y.

Let X be a Banach space with the norm || - ||x. Denote by X*
the adjoint space of all bounded linear functionals on X. The pairing
between z* € X* and z € X is denoted by (z*,z). Unless otherwise
stated, we use symbols 7 —” and ” — ” to denote the strong and weak
convergence, respectively, i.e., the sequence {x,}, x, € X converges
strongly (weakly) to the point z¢p € X, denote by z, — x¢ (x, — x0), if

lim ||z, — zol|x =0 (lim (2%, z,) = (z%,29) for each zx e X7).
n—oo n—oo

Let F' be mapping (nonlinear, in general) with the domain M C X
and the range in the Banach space Y. F is said to strongly (weakly)
continuous on M if z, — x¢ (z, — x¢) in X implies F(z,) — F(xo)
inY for x,, x9 € M, and F is said to be completely continuous on M
if F'is continuous on M and for each bounded subset D C M, F(D) is
compact subset in Y.

DEFINITION 3.7. Let F' be a mapping defined by on a Banach space
X with value in a real Banach space Y and b > 0 a real number.

(a) F is said to be b-homogeneous if
P F(u) = F(tu)

holds for each t > 0 and all u € X.

(b) F is said to be b-quasi-homogeneous if there exist nonlinear op-
erators R and Fy defined on X with value in Y such that Fy is
b-homogeneous and F'(u) = R(u)Fy(u) for every u € X satisfying

lim ||R(u)|ly € RT.
o0

llullx—
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EXAMPLE 3.8. Set X =Y =R and

u
F(u) = 3,
(w) =17 ]

Then F' is said to be 3-quasi-homogeneous.

REMARK 3.9. In [9], the relationship between F' and Fy is defined
in other words as F is said to be b-strongly quasi-homogeneous with
respect to Fy, if

tn >0 = 0,u, — ug = t2F(up/ty) = Fo(ug) €Y.

If F' is the strong continuous and b-quasi-homogeneous, then F is a b-
strongly quasi-homogeneous with respect to Fp, So, our basic results
follow theorems of [9].

THEOREM 3.10. Let X be a reflexive space, and let T be odd (K, L, a)-
homeomorphism of X onto Y, F : X — Y an odd strong continuous

and b-quasi-homogeneous operator. If a > b, then AT — F maps X onto
Y for any X\ # 0.

Proof. Since X is a reflexive space, we know that every strong con-
tinuous operator F' : X — Y is also completely continuous. Hence
according to Corollary 3.6 it is sufficient to prove that

F(x
i LE@y o
e=oo ||zl
Since F' is b-quasi-homogeneous, there exist R and Fj be a mappings

defined by on a Banach space X with value in RT and a real Banach
space Y, respectively, such that F' = RFy satisfying
lim R(u) = co

|u|—o00

for some a constant ¢y > 0 holds and Fy is b-homogeneous. Suppose
that there exist e > 0 and a sequence {x,} , z,, € X , ||z,| yx — oo such
that
Tn
— =y RN o)
ol x

[ (zn)lly
1%
for any positive integer n. Then
E(llzn]lvn)

b
HanX

and

= R(||zn||vn)Fo(vn) = coFo(vo),



200 Daewook Kim and Jin-Mun Jeong

and
b
Izl
a
(e
implies
b
0<e< [F @)l llznll”  [[F (@)l
—_ - 9
lznll®  lzall® 2
which is a contradiction. O

THEOREM 3.11. Let X be a reflexive space, and let T be odd (K, L, a)-
homeomorphism of X onto Y, F': X — Y an odd strongly continuous
and b-quasi-homogeneous operator. If Fy(v) = 0 imply v = 0, and a < b,
then AT — F maps X onto Y for any A # 0.

Proof. According to Proposition 3.5, we shall prove
lim [[AT'(z) — F(z)]ly = oo

Since F' is b-quasi-homogeneous, there exist R and Fy be mappings de-
fined by on a Banach space X with value in R* and a real Banach space
Y, respectively, such that F' = RFy satisfying

lim R(u) = co

|u|—o00

for some a constant cg > 0 holds and Fj is b-homogeneous. Suppose that
there exist a constant M > 0 and a sequence {x,,}, z, € X, ||zp] x — 00
such that

Tn

[

= Unp — Vo
and
INT(2) = Flea)ly < M
for any positive integer n. Then
AT (||| vn) _ Flzn| vn

b b J
(| [
and so
T
7(”%[%) — coFo(vo).
(|

But since T is (K, L, a)- homeomorphism, we have

gl S AT

b — b
[z 2

a a
BN I s gyl

. b M
e




Approximate controllability 201

Thus, noting that a < b, it holds
Tz,
Tl

b
2

)

and Fy(vg) = 0. From our assumption vy = 0 and this is a contradiction
with [|vg]| y = 1. O

Now, we consider the approximate controllability for the following
semilinear control system

{imw — Aw(t) + f(t,x(t)) + (Bo)(t),

(3.2) z(0) = xo.

We shall make use of the following assumption:
Assumption (A) The embedding D(A) C V is completely continuous.

By using the Krasnosel’skii theorem(see [2]), we can define an oper-
ator F : L?(0,T;U) — L?*(0,T; H) as

(3-3) Fv) = =f(, x0).

Assumption (F1) F is b-quasi-homogeneous.

THEOREM 3.12. Under Assumptions (A), (F) and (F1), if 1 > b, then
we have

Rr(0) C Rr(f).
Therefore, if the linear system (3.2) with f = 0 is approximately con-
trollable, then so is the nonlinear system (3.2).

Proof. Thanks to Corollary 2.5, F' defined by (3.3) is a completely
continuous mapping from L2(0,T;U) to L?(0,T; H). We shall show that
F is strongly continuous. Given a sequence {u,} , u, € L*(0,T;U) ,
up — u, we claim that F(u,) — F(u). By (2.11) and (2.12), we have

1F (un) = Fu)ll 200y < Wkl 20,0 VT L l|2w, — Tullz207:v)
< |kl 207y VT L1Csl [t — ull 20,707y

and so, F'(u,) — F(u). Hence, to prove our claim it suffices to show that
every subsequence of { F'(u,)} contains another subsequence which con-
verge. However, this is immediate because the sequence {u, } is bounded
and F' is a completely continuous.

Since 1 > b and the identity operator I on L?(0,T; H) is an odd
(1,1, 1)-homeomorphism, from Theorem 3.2, it follows that that A\I — F
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maps L?(0,7T; H) onto itself for any A # 0. Let

T
n= / S(T — s)(Bv)(s)ds € Rr(0).
0
We are going to show that there exists w such that
n=xz(T;g,w).
We denote the range of the operator B by Hp, its closure Hp in
L?(0,T; H). Let F; be the orthogonal complement of H g in L?(0,T; H).
Let X = L?(0,T; H)/H; be the quotient space and the norm of a coset
- -1 . - —1 .
§=yp+ Hp € X is defined of ||7|| = |lys + Hp|| = inf{|ys + 9| : yp €
Hp, g€ Fﬁ} We define by @ the isometric isomorphism from X onto
- L - =1
HBv that 18, Qy:Q(yB+g:yBEHBv QGHB):yB Let
- o ol
Fy=FQy)+Hp
for § € X. Then F is also a completely continuous mapping from X to
itself.

Set z = Bv. Then z € Hp and Z = z+ﬁ§ € X. Hence, by Theorem
3.10 with A = 1, there exists w € X such that

(3.4) zZ=w— Fuw.

Put wg = Q@ . Then we have that w —wg =€ Fé. Hence,
(3.5) f=w-— F(wp) + Hp = wp — F(wg) + Hp.
Thus, from (3.4) and (3.5) it follows that

T
n= / S(T — s)(—=F(wp)(s) + wp(s))ds
0

T
:/0 S(T = 8)(f(5, ) + wp(s))ds.

Since wp € Hp, there exists a sequence {v,} € L?(0,T;U) such that
Buy, — wpg in L*(0,T; H).
Let y; be the solution of the equation with B = I

da(t) = Ax(t) + f(t,z(t) + f(b),
z(0) = xo.
Then
T
yy = S(T)ao + /0 S(T — $){f(s,2(s)) + f(s)}ds.
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Here, we note ypy, f = x(T'; g, v,). Thus, for each € > 0, we can choose
a control function vy such that

—1
|Bon — wpl|207.m) < { (MVT(||k|| 120y VTL1C3 + 1)} e,
where M is a constant in (2.1). Then we have
lyon = nllz2.r:my < (MVT(||Kl| 12(0m) VT L1Cs + 1) || Buy — wp|| < e.
Since € is given arbitrary, we conclude n € Ry (f). O

THEOREM 3.13. Let Assumptions (A), (F) and (F'1) hold. If F(v) =0
imply v =0 and 1 # b, then we have

Rr(0) C Ry(f).

Proof. If 1 > b, it holds from Theorem 3.10. The case if 1 < b is
obvious from Theorem 3.11. O

We need to impose following assumption:
Assumption (B). There exist positive constants 3, v such that
Bllull < |Bul <~lull, Vue L*0,T;U).

THEOREM 3.14. Under Assumptions (A), (F), (F1), and (B), if 1 <b
then the semilinear control system (3.2) is approximately controllable.

Proof. Since B is odd (v, 3,1)- homeomorphism of L?(0,T;U) onto
L?(0,T;H), F : L*(0,T;U) — L?(0,T; H) an odd strong continuous b-
homogeneous operator. From Theorem 3.10, it follows that if 1 > b then
AB — F maps L?(0,T;U) onto L*(0,T; H) for any A # 0. Let £ € D(A).
Then there exists a function p € C1(0,T; H) such that

T
e~ [ S - s)ps)as
0
for instance, put p(s) = (§£ + sA£)/T. Hence, there exists a function
u € L*(0,T;U) such that
p= (AB — F)u,
that is,
T
€= [ ST =s){fs.0(5) + (Bu)(s)as.

Therefore, if 1 > b, then D(A) C Rp(f), which complete the proof. [

THEOREM 3.15. Let Assumptions (A), (B), (F) and (F1) hold. If
F(v) = 0 imply v = 0 and 1 # b, then the semilinear control system
(3.2) is approximately controllable.
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Proof. This theorem is obvious from Theorems 3.13 and 3.14. O

EXAMPLE 3.16. We consider the semilinear heat equation dealt with
by [19] and [27]. Let

H = L*0,7), V = H}0,7), V* = H*(0,7),

T du(x) dv(z)
/0 de  dz de

a(u,v) =

and
A=d*/dz* with D(A) = {y e H*0,7):y(0) =y(x) = 0}.

We consider the following retarded functional differential equation

(3.6) L a(t) = Ax(t) + f(a(0)) + Bu(?),
where
__ 9% 3
flx) = 1+’x|1‘ , 0>0.

For z, y € H, set max{|z(&)|,|z(&)|} for almost all £ € (0, 7). Then we
have

[f(@(©)) = f(y(©))] < Bom*(1+m)~H|z(€) — y(&)]

for almost all € € (0, 7). It is easily seen that Assumption (F') is satisfied
and f is 3-quasi-homogeneous.

The eigenvalue and the eigenfunction of A are A\, = —n? and ¢, (z) =
sinnx, respectively. Let

o o
U= {Zun¢n : ZUEL < OO},
n=2 n=2
o (0. ]
Bu = 2us¢1 + Zunqﬁn, for w= Zun e U.
n=2 n=2

Now we can define bounded linear operator B from L? (0,T;U) to L*(0,T; H)
by (Bu) = Bu(t), u € L*(0,T;U). It is easily known that the operator
B is one to one and the range of B is closed. it follows that the opera-
tor satisfies Assumption (B). We can see many examples which satisfy
Assumption (B) as seen in [27, 28].

The solution of the following equation

d
%az(t) = Az(t) + Bw(t)
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with initial datum 0 is
t
z(t) = / e=D4Bw(s)ds.
0

Let £ € D(A) and

u(s) = B (€ + sAE)/T.
Then it follows that x(T') = £, which says that the reachable set Rr(0)
for linear system is a dense subspace. Moreover, from Theorem 3.15 with
A =1, it follows that the system of (3.6) is approximately controllable.

4. Conclusion

The purpose of this paper is obtained some sufficient conditions for
the approximate controllability of a class of semilinear integro-differential
functional control equations in which nonlinear terms of given equations
satisfy quasi-homogeneous properties. Our used tool is the surjective
theorems similar to the Fredholm alternative for nonlinear operators
under restrictive assumption, which is on the solution of nonlinear op-
erator equations Al (z) — F(z) = y in dependence on the real number A,
where I is the identity operator and F' is a nonlinear operator. To solve
this problem, we prove that AT — F' maps for any A # 0 provided that T
is an odd (K, L, a)- homeomorphism, F' an odd strongly continuous and
b-quasi-homogeneous operator satisfying a;b. Motivated by this consid-
eration, we derive the approximate controllability of semilinear systems
provided the approximate controllability of the corresponding linear sys-
tems considering T as the identity function. In the finite dimensional
case we prove the same assertion under the assumption a < b, but it
seems to be unsolved up to this time in infinite dimensional space.

References

[1] J. P. Aubin, Un théoréme de compacité, C. R. AQcad. Sci., 256 (1963), 5042-5044.

[2] J. P. Aubin, I. Ekeland, Applied Nonlinear Analysis , John Wiley and Sons, New
York, 1984.

[3] K. Balachandran, J. P. Dauer, Controllability of nonlinear systems in Banach
spaces; a survey, J. optim. Theory Appl., 115 (2002), 7-28.

[4] P. Balasubramaniam, J. Y. Park, P. Muthukumar, Approzimate controllability of
neutral stochastic functional differential systems with infinite delay, Stochastic Anal.
Appl., 28 (2010), 389-400.

[5] P. L. Butzer, H. Berens, Semi-Groups of Operators and Approzimation, Springer-
verlag, Belin-Heidelberg-New York, 1967.


https://link.springer.com/article/10.1023/A:1019668728098
https://www.tandfonline.com/doi/abs/10.1080/07362990802405695

206 Daewook Kim and Jin-Mun Jeong

[6] J. P. Dauer, N. I. Mahmudov, Approzimate controllability of semilinear functional
equations in Hilbert spaces, J. Math. Anal., 273 (2002), 310-327.

[7] G. Di Blasio, K. Kunisch, E. Sinestrari, L?-regularity for parabolic partial inte-
grodifferential equations with delay in the highest-order derivatives, J. Math. Anal.
Appl., 102 (1984), 38-57.

[8] X. Fu, J. Lu, Y. You, Approzimate controllability of a semilinear neutral evolution
systems with delay, Inter. J. Control., 87 (2014), 665-681.

[9] S. Fucik, J. Necas, J. Soucek, V. Soucek, Lecture Notes in Mathematics 346,
Springer-verlag, Belin-Heidelberg-New York, 1973.

[10] J. M. Jeong, Y. C. Kwun, J. Y. Park, Approzimate controllability for semilinear
retarded functional differential equations, J. Dyn. Control. Syst., 5 (1999), 329-346.

[11] J. M. Jeong and H. G. Kim, Controllability for semilinear functional integrodif-
ferential equations, Bull. Korean Math. Soc., 46 (2009), no. 3, 463-475.

[12] Y. H. Kang, J. M. Jeong, Control problems for semi-linear retarded integro-
differential equations by the Fredholm theory, Inter. J. Control., 92 2019, 56-64.

[13] J. M. Jeong, Y. H. Kang, Controllability for trajectories of semilinear functional
differential equations, Bull. Korean Math. Soc., 55 (2018), 63-79.

[14] N. G. Lloid, Degree Theory, Cambridge Univ., Press, 1978.

[15] N. I. Mahmudov, Approximate controllability of semilinear deterministic and
stochastic evolution equations in abstract spaces, SIAM J. Control. Optim., 42 (2006)
175-181.

[16] F. Z. Mokkedem, X. Fu, Approzimate controllability of a semi-linear neutral
evolution systems with infinite delay, Internat. J. Robust Nonlinear Control., 27
(2017), 1122-1146.

[17] P. Muthukumar, P. Balasubramaniam, Approzimate controllability for a semi-
linear retarded stochastic systems in Hilbert spaces, IMA J. Math. Contr. Inform.,
26 (2009), 131-140.

[18] P. Muthukumar, C. Rajivganthi, Approzimate controllability of fractional order
neutral stochastic integro-differential system with nonlocal conditions and infinite
delay, Taiw. J. Math., 17 (2013), 1693-1713.

[19] K. Naito, Controllability of semilinear control systems dominated by the linear
part, SIAM J. Control Optim., 25 (1987), 715-722.

[20] B. Radhakrishnan, K. Balachandran, Controllability of neutral evolution inte-
grodifferential systems with state dependent delay, J. Optim. Theory Appl., 153
(2012), 85-97.

[21] Y. Ren, L. Hu, R. Sakthivel, Controllability of impulsive neutral stochastic func-
tional differential inclusions with infinite delay, J. Comput. Appl. Math., 235 (2011),
2603-2614.

[22] R. Sakthivel, N. I. Mahmudov, S. G. Lee, Controllability of non-linear impulsive
stochastic systems, Inter. J. Control., 82 (2009), 801-807.

[23] N. Sukavanam, N. K. Tomar, Approzimate controllability of semilinear delay
control system, Nonlinear Func. Anal.Appl., 12 (2007), 53-59.

[24] H. Tanabe, Equations of Evolution, Pitman-London, 1979.

[25] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-
Holland, 1978.

[26] L. Wang, Approzimate controllability for integrodifferential equations with mul-
tiple delays, J. Optim. Theory Appl., 143 (2009), 185-206.


https://www.sciencedirect.com/science/article/pii/S0022247X02002251
https://www.sciencedirect.com/science/article/pii/0022247X84902002
https://www.tandfonline.com/doi/abs/10.1080/00207179.2013.852254
https://link.springer.com/article/10.1023/A:1021714500075
http://bkms.kms.or.kr/journal/view.html?doi=10.4134/BKMS.2009.46.3.463
https://www.tandfonline.com/doi/abs/10.1080/00207179.2017.1390260
https://www.koreascience.or.kr/article/JAKO201809951100011.page
https://epubs.siam.org/doi/abs/10.1137/S0363012901391688
https://onlinelibrary.wiley.com/doi/full/10.1002/rnc.3619
https://ieeexplore.ieee.org/document/8145565
https://www.jstor.org/stable/taiwjmath.17.5.1693
https://epubs.siam.org/doi/10.1137/0325040
https://link.springer.com/article/10.1007/s10957-011-9934-z
https://www.sciencedirect.com/science/article/pii/S037704271000628X
https://www.tandfonline.com/doi/abs/10.1080/00207170802291429
https://link.springer.com/article/10.1007%2Fs10957-009-9545-0

Approximate controllability 207

[27] H. X. Zhou, Approzimate controllability for a class of semilinear abstract equa-
tions, SIAM J. Control Optim., 21 (1983), 551-565.

[28] H. X. Zhou, Controllability properties of linear and semilinear abstract control
systems, STAM J. Control Optim., 22 (1984), 405-422.

*

Department of Mathematics Education

Seowon University
Chungbuk 28674, Republic of Korea
E-mail: kdw@seowon.ac.kr

k%

Department of Applied Mathematics
Pukyong National University

Busan 48513, Republic of Korea
E-mail: jmjeong@pknu.ac.kr


https://epubs.siam.org/doi/abs/10.1137/0321033
https://epubs.siam.org/doi/abs/10.1137/0322026



